Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Environmental Chemical Engineering ; 10(4), 2022.
Article in English | Scopus | ID: covidwho-1945561

ABSTRACT

Advancements in polymer science and engineering have helped the scientific community to shift its attention towards the use of environmentally benign materials for reducing the environmental impact of conventional synthetic plastics. Biopolymers are environmentally benign, chemically versatile, sustainable, biocompatible, biodegradable, inherently functional, and ecofriendly materials that exhibit tremendous potential for a wide range of applications including food, electronics, agriculture, textile, biomedical, and cosmetics. This review also inspires the researchers toward more consumption of biopolymer-based composite materials as an alternative to synthetic composite materials. Herein, an overview of the latest knowledge of different natural- and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented. The review discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects. This review also elucidates current challenges, future opportunities, and emerging applications of biopolymeric sustainable composites in numerous engineering fields. Finally, this review proposes biopolymeric sustainable materials as a propitious solution to the contemporary environmental crisis. © 2022 Elsevier Ltd.

2.
Journal of Excipients and Food Chemicals ; 13(1):4-17, 2022.
Article in English | EMBASE | ID: covidwho-1820630

ABSTRACT

Excipients are critically important in converting active pharmaceutical ingredients (API) into drug products that have optimal stability, bioavailability, manufacturability, duration of action, and therapeutic benefits. They will play even greater roles in the future to enable drug targeting, delivery of biotech products and vaccines, gene therapy, continuous manufacturing, 3D printing, and so forth. This commentary describes the author’s experience in teaching a graduate course on excipients at St. John’s University to train students on optimal selection and appropriate use of excipients in formulating dosage forms and development of drug delivery systems. The course is offered in 15 two-hour sessions over a semester, and the course materials are divided into 13 modules on chemistry of different classes of polymeric and non-polymeric excipients and their application in dosage form development, including the use as solubilizing agents, lyophilizing agents, cryoprotectants, buffers, biodegradable materials, and carriers for amorphous solid dispersions and 3D printing. The development of coprocessed excipients, the need for new excipients, and the regulatory aspects of excipients are also covered. The course includes presentations by guest speakers from the industry, and the students also watch virtual presentations from experts that are publicly available from the internet. It is a popular course at St. John’s University taken by all graduate students in the pharmaceutics program. It is recommended that such courses are introduced in other pharmacy schools and academic institutions. The course may be adapted to meet specific needs of different academic programs. Professional associations, such as AAPS and CRS, industry groups like IPEC, and the pharmaceutical industry may be able to help in introducing such courses by providing lecture materials and guest lecturers.

3.
Journal of Excipients and Food Chemicals ; 13(1), 2022.
Article in English | EMBASE | ID: covidwho-1812893
SELECTION OF CITATIONS
SEARCH DETAIL